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Search Engines

System for the Mechanical Analysis and Retrieval of Text

Harvard 1962 – 1965

IBM 7094 & IBM 360

Gerard Salton

Implemented at Cornell (1965 – 1970)

Based on matrix methods



Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)



Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms



Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing



Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Count fij = # times term i appears in document j



Term–Document Matrices

Start with dictionary of terms

Words or phrases ( e.g., landing gear)

Index Each Document

Humans scour pages and mark key terms

Robots crawl the web — software does indexing

Count fij = # times term i appears in document j

Term–Document Matrix

⎛⎜⎜⎜⎝
Doc 1 Doc 2 . . . Doc n

Term 1 f11 f12
. . . f1n

Term 2 f21 f22
. . . f2n...

...
...

. . .
...

Term m fm1 fm2
. . . fmn

⎞⎟⎟⎟⎠ = Am×n
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Query Matching
Query Vector

qT = (q1, q2, . . ., qm) qi =
{

1 if Term i is requested
0 if not

How Close is Query to Each Document?

i.e., how close is q to each column Ai?

θ

1θ

2

A1
A2

A3

q ‖q − A1‖ < ‖q − A2‖ but θ2 < θ1

Use δi = cos θi =
qTAi

‖q‖ ‖Ai‖

Rank documents by size of δi

Return Document i to user when δi ≥ tol
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Term Weighting
A Problem

Suppose query = NCSU

Suppose NCSU occurs once in D1 and twice in D2

— Then δ2 ≈ 2δ1 ( if ‖A1‖≈‖A2‖ )

To Compensate

Set aij = log(1 + fij) (Other weights also used)

Query Weighting

Terms Boeing and airplanes not equally important in queries

Importance of Term Ti in a query tends to be inversely
proportional to νi = # Docs containing Ti

To Compensate

Set qi =
{

log(n/νi) if νi �= 0
0 if νi = 0

(Other weights also possible)
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Uncertainties
Ambiguity in Vocabulary

A plane could be . . .

— A flat geometrical object

— A woodworking tool

— A Boeing product

Variation in Writing Style

No two authors write the same way

— One author may write car and laptop

— Another author may write automobile and portable

Variation in Indexing Conventions

— No two people index documents the same way

— Computer indexing is inexact and can be unpredictable
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Theory vs Practice

In Theory — it’s simple and elegant

— Index Docs — Weight frequencies in A— Normalize ‖Ai‖ = 1

— For each query, Weight terms — Normalize ‖q‖ = 1

— Compute δi = cos θi = (qTA)i to return the most relevant docs

In Practice — it breaks down

— Suppose query = car

— D1 indexed by gas, car, tire (found)

— D2 indexed by automobile, fuel, and tire (missed)

The Challenge

— Find D2 by revealing the latent connection through tire
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Latent Semantic Indexing
Use a Fourier expansion of A

A =
∑r

i=1 σiZi, 〈Zi Zj〉 =
{

1 i=j,

0 i�=j,
|σ1| ≥ |σ2| ≥ . . . ≥ |σr|

|σi| = | 〈Zi A〉 | = amount of A in direction of Zi

Realign data along dominant directions {Z1, . . ., Zk, Zk+1, . . ., Zr}
— Project A onto span {Z1, Z2, . . ., Zk}

Truncate: Ak = P (A) = σ1Z1 + σ2Z2 + . . . + σkZk

LSI: Query matching with Ak in place of A

— D2 forced closer to D1 =⇒ better chance of finding D2

Possible expansions
— URV: A = URVT =

∑
rijuivT

j — SVD: A = UDVT =
∑

σiuivT
j

— Haar: A = HmBHT
n =

∑
i,j βijhihT

j ( h’s only use -1, 0, 1 )
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Limitations

• Rankings are query dependent

Rank of each doc is recomputed for each query

• Only semantic content is used

Link structure completely ignored

• Difficult to add & delete documents

Requires updating & downdating SVD

• Determining optimal k is not easy

Empirical tuning required

• Doesn’t scale up well

Impractical for www
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Using WWW Link Structure
Indexing

• Still must index key terms on each page
Robots crawl the web — software does indexing

• Inverted file structure (like book index: terms −→ to pages)
Term1 → Pi, Pj, . . .

Term2 → Pk, Pl, . . .
...

Importance Rankings

• Attach an “importance rank” ri to each page: Pi ∼ ri

— ri based only on link structure (i.e., query independent)

— ri computed prior to any query

Direct Query Matching
• Query = (Term1, T erm2) −→ (Pi, ri), (Pj, rj), (Pk, rk), . . .

Return Pi, Pj, Pk, . . . in order of ranks ri, rj, rk, . . .
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How To Measure “Importance”

Authorities Hubs

• Good hub pages point to good authority pages

• Good authorities are pointed to by good hubs
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HITS Algorithm
Hypertext Induced Topic Search (J. Kleinberg 1998)

Determine Authority & Hub Scores

• ai = authority score for Pi • hi = hub score for Pi

Successive Refinement

• Start with hi(0) = 1 for all pages Pi Lij =
{

1 Pi → Pj

0 Pi �→ Pj

• Successively refine rankings

— For k = 1,2, . . .

ai(k) =
∑

j:Pj→Pi

hj(k − 1) ⇒ ak = LThk−1

hi(k) =
∑

j:Pi→Pj

aj(k) ⇒ hk = Lak

— A = LTL ak = Aak−1 → e-vector (direction)

— H = LLT hk = Hhk−1 → e-vector (direction)
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Compromise

1. Do direct query matching

2. Build neighborhood graph

3. Compute authority & hub scores for just the neighborhood
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Pros & Cons

Advantages

• Returns satisfactory results

— Client gets both authority & hub scores

• Some flexibility for making refinements

Disadvantages

• Too much has to happen while client is waiting

— Custom built neighborhood graph needed for each query

— Two eigenvector computations needed for each query

• Scores can be manipulated by creating artificial hubs
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Google’s PageRank
(Lawrence Page & Sergey Brin 1998)

PageRank r(P ) Is Not Query Dependent

• Depends primarily on link structure of web

— Off-line calculations

— No computation at query time

r(P ) Depends On Ranks Of Pages Pointing To P

• Importance is not number of in-links or out-links

— One link to P from Yahoo! is important

— Many links to P from me is not

PageRank Shares The Vote

• Yahoo! casts many “votes” =⇒ value of vote from Y is diluted

— If Yahoo! “votes” for n pages

— then P receives only r(Y )/n credit from Y
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After Step j

πT
j =

[
rj(P1), rj(P2), . . ., rj(Pn)

]
πT

j+1 = πT
j P where pij =

{
1/|Pi| if i → j

0 otherwise

PageRank = lim
j→∞

πT
j = πT

(provided limit exists)

It’s A Markov Chain

P =
[
pij

]
is a stochastic matrix (set pii=1 when all other pij=0)

Each πT
j is a probability distribution vector

(∑
i
rj(Pi)=1

)
πT

j+1 = πT
j P is random walk on the graph defined by links

πT = lim
j→∞

πT
j = steady-state probability distribution
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Long-run proportion of time on page Pi is πi

Problems

Dead end page (nothing to click on) — a “dangling node”

πT not well defined

Could get trapped into a cycle (Pi → Pj → Pi)

No convergence

Convergence

Markov chain must be irreducible and aperiodic

Bored Surfer Enters Random URL

Replace P by P̃ = αP + (1 − α)E eij = 1/n α ≈ .85

Different E = evT and α allow customization & speedup
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Computing πT

A Big Problem

Solve πT = πTP (eigenvector problem)

πT (I − P) = 0 (too big for direct solves)

Start with πT
0 = e/n and iterate πT

j+1 = πT
j P (power method)

Convergence Time

Measured in days

A Bigger Problem — Updating

Pages & links are added, deleted, changed continuously

Google says just start from scratch every 3 to 4 weeks

Prior results don’t help to restart
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Inherited Properties
Si ≥ 0

Si is irreducible

ρ(Si) = ρ = ρ(P)
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Exact Aggregation
Aggregation Matrix

sT
i = Left-hand Perron vector for Si

A =
[

sT
1S1e sT

1S2e

sT
2S1e sT

2S2e

]
2×2

Inherited Properties

A ≥ 0

A is irreducible

ρ(A) = ρ = ρ(P) = ρ(Si)

The Aggregation/Disaggregation Theorem

Left-hand Perron vector for A = (α1, α2)
=⇒

Left-hand Perron vector for P = ( α1sT
1 | α2sT

2 )
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φT = (φ1, φ2, . . ., φm) = Old PageRank Vector (known)

Updated Data

Pn×n = New Google Matrix (known)

πT = (π1, π2, . . ., πn) = New PageRank Vector (unknown)

Separate Pages Likely To Be Most Affected

G = {most affected} G = {less affected} S = G ∪ G

New pages (and neighbors) go into G
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Aggregation
Partitioned Matrix

Pn×n =

( G G
G P11 P12

G P21 P22

)
=

⎡⎢⎢⎢⎢⎣
p11

. . . p1g rT
1

...
. . .

...
...

pg1
. . . pgg rT

g

c1
. . . cg P22

⎤⎥⎥⎥⎥⎦
πT = (π1, . . .πg |πg+1, . . ., πn)

Perron Complements

p11
. . .pgg are 1 × 1 =⇒ Perron complements = 1

=⇒ Perron vectors = 1

One significant complement S2 = P22 + P21(I − P11)−1P12

One significant Perron vector sT
2S2 = sT

2

A/D Theorem =⇒ sT
2 = (πg+1, . . ., πn)/

∑n
i=g+1 πi
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Approximate Aggregation

Use Some Old PageRanks to Approximate New Ones

(πg+1, . . ., πn) ≈ (φg+1, . . ., φn)

Approximate Perron Vector

sT
2 =

(πg+1, . . ., πn)∑n

i=g+1
πi

≈ (φg+1, . . ., φn)∑n

i=g+1
φi

= s̃T
2

Approximate Aggregation Matrix

Ã =
[

P11 P12e

s̃T
2P21 1 − s̃T

2P21e

]
α̃T =

(
α̃1, . . ., α̃g, α̃g+1

)
Approximate New PageRank Vector

π̃T =
(
α̃1, . . ., α̃g | α̃g+1s̃T

2

)
(not bad)
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Iterative Aggregation
Improve By Successive Aggregation / Disaggregation?

NO!

Can’t do A/D twice — a fixed point emerges

Solution

Perturb A/D output to move off of fixed point

Move it in direction of solution˜̃πT = π̃TP (a smoothing step)

The Iterative A/D Updating Algorithm

Determine the “G-set” partition S = G ∪ G

Approximate A/D step generates approximation π̃T

Smooth the result ˜̃πT = π̃TP

Use ˜̃πT as input to another approximate aggregation step
...
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Convergence

THEOREM

Always converges to the new PageRank vector πT

Converges for all partitions S = G ∪ G

Rate of convergence governed by |λ2(S2)|
S2 = P22+P21(I−P11)−1P12

THE GAME

Find a relatively small G to minimize |λ2(S2)|

Can do — Use “power law” distribution of the web
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